471 research outputs found

    Stellar granulation as seen in disk-integrated intensity. I. Simplified theoretical modeling

    Full text link
    The solar granulation is known for a long time to be a surface manifestation of convection. Thanks to the current space-borne missions CoRoT and Kepler, it is now possible to observe in disk-integrated intensity the signature of this phenomena in a growing number of stars. The space-based photometric measurements show that the global brightness fluctuations and the lifetime associated with granulation obeys characteristic scaling relations. We thus aim at providing a simple theoretical modeling to reproduce these scaling relations and subsequently at inferring the physical properties of granulation properties across the HR diagram. We develop a simple 1D theoretical model that enable us to test any prescription concerning the time-correlation between granules. The input parameters of the model are extracted from 3D hydrodynamical models of the surface layers of stars, and the free parameters involved in the model are calibrated with solar observations. Two different prescriptions for representing the eddy time-correlation in the Fourier space are compared: a Lorentzian and an exponential form. Finally, we compare our theoretical prediction with a 3D radiative hydrodynamical (RHD) numerical modeling of stellar granulation (ab-initio approach). Provided that the free parameters are appropriately adjusted, our theoretical model satisfactorily reproduces the shape and the amplitude of the observed solar granulation spectrum. The best agreement is obtained with an exponential form. Furthermore, our theoretical model results in granulation spectra that consistently agree with the these calculated on the basis of the ab-initio approach with two 3D RHD models. Comparison between theoretical granulation spectra calculated with the present model and high precision photometry measurements of stellar granulation is undertaken in a companion paper.Comment: 10 pages, 2 figures, accepted for publication in A&

    Generation of internal gravity waves by penetrative convection

    Full text link
    The rich harvest of seismic observations over the past decade provides evidence of angular momentum redistribution in stellar interiors that is not reproduced by current evolution codes. In this context, transport by internal gravity waves can play a role and could explain discrepancies between theory and observations. The efficiency of the transport of angular momentum by waves depends on their driving mechanism. While excitation by turbulence throughout the convective zone has already been investigated, we know that penetrative convection into the stably stratified radiative zone can also generate internal gravity waves. Therefore, we aim at developing a semianalytical model to estimate the generation of IGW by penetrative plumes below an upper convective envelope. We derive the wave amplitude considering the pressure exerted by an ensemble of plumes on the interface between the radiative and convective zones as source term in the equation of momentum. We consider the effect of a thermal transition from a convective gradient to a radiative one on the transmission of the wave into the radiative zone. The plume-induced wave energy flux at the top of the radiative zone is computed for a solar model and is compared to the turbulence-induced one. We show that, for the solar case, penetrative convection generates waves more efficiently than turbulence and that plume-induced waves can modify the internal rotation rate on shorter time scales. We also show that a smooth thermal transition significatively enhances the wave transmission compared to the case of a steep transition. We conclude that driving by penetrative convection must be taken into account as much as turbulence-induced waves for the transport of internal angular momentum.Comment: Accepted for publication in A&A, 21 page

    Introduction

    Get PDF
    This book is dedicated to all the people interested in the CoRoT mission and the beautiful data that were delivered during its six year duration. Either amateurs, professional, young or senior researchers, they will find treasures not only at the time of this publication but also in the future twenty or thirty years. It presents the data in their final version, explains how they have been obtained, how to handle them, describes the tools necessary to understand them, and where to find them. It also highlights the most striking first results obtained up to now. CoRoT has opened several unexpected directions of research and certainly new ones still to be discovered

    Solar-like oscillations in massive main-sequence stars. I. Asteroseismic signatures of the driving and damping regions

    Full text link
    Motivated by the recent detection of stochastically excited modes in the massive star V1449 Aql (Belkacem et al., 2009b), already known to be a β\beta Cephei, we theoretically investigate the driving by turbulent convection. By using a full non-adiabatic computation of the damping rates, together with a computation of the energy injection rates, we provide an estimate of the amplitudes of modes excited by both the convective region induced by the iron opacity bump and the convective core. Despite uncertainties in the dynamical properties of such convective regions, we demonstrate that both are able to efficiently excite pp modes above the CoRoT observational threshold and the solar amplitudes. In addition, we emphasise the potential asteroseismic diagnostics provided by each convective region, which we hope will help to identify the one responsible for solar-like oscillations, and to give constraints on this convective zone. A forthcoming work will be dedicated to an extended investigation of the likelihood of solar-like oscillations across the Hertzsprung-Russell diagram.Comment: 9 pages, 14 figures, accepter in A&

    Stochastic excitation of non-radial modes I. High-angular-degree p modes

    Full text link
    Turbulent motions in stellar convection zones generate acoustic energy, part of which is then supplied to normal modes of the star. Their amplitudes result from a balance between the efficiencies of excitation and damping processes in the convection zones. We develop a formalism that provides the excitation rates of non-radial global modes excited by turbulent convection. As a first application, we estimate the impact of non-radial effects on excitation rates and amplitudes of high-angular-degree modes which are observed on the Sun. A model of stochastic excitation by turbulent convection has been developed to compute the excitation rates, and it has been successfully applied to solar radial modes (Samadi & Goupil 2001, Belkacem et al. 2006b). We generalize this approach to the case of non-radial global modes. This enables us to estimate the energy supplied to high-(\ell) acoustic modes. Qualitative arguments as well as numerical calculations are used to illustrate the results. We find that non-radial effects for pp modes are non-negligible: - for high-nn modes (i.e. typically n>3n > 3) and for high values of \ell; the power supplied to the oscillations depends on the mode inertia. - for low-nn modes, independent of the value of \ell, the excitation is dominated by the non-diagonal components of the Reynolds stress term. We carried out a numerical investigation of high-\ell pp modes and we find that the validity of the present formalism is limited to <500\ell < 500 due to the spatial separation of scale assumption. Thus, a model for very high-\ell pp-mode excitation rates calls for further theoretical developments, however the formalism is valid for solar gg modes, which will be investigated in a paper in preparation.Comment: 12 pages, accepted for publication in A&

    Period spacings in red giants I. Disentangling rotation and revealing core structure discontinuities

    Full text link
    Asteroseismology allows us to probe the physical conditions inside the core of red giant stars. This relies on the properties of the global oscillations with a mixed character that are highly sensitive to the physical properties of the core. However, overlapping rotational splittings and mixed-mode spacings result in complex structures in the mixed-mode pattern, which severely complicates its identification and the measurement of the asymptotic period spacing. This work aims at disentangling the rotational splittings from the mixed-mode spacings, in order to open the way to a fully automated analysis of large data sets. An analytical development of the mixed-mode asymptotic expansion is used to derive the period spacing between two consecutive mixed modes. The \'echelle diagrams constructed with the appropriately stretched periods are used to exhibit the structure of the gravity modes and of the rotational splittings. We propose a new view on the mixed-mode oscillation pattern based on corrected periods, called stretched periods, that mimic the evenly spaced gravity-mode pattern. This provides a direct understanding of all oscillation components, even in the case of rapid rotation. The measurement of the asymptotic period spacing and the signature of the structural glitches on mixed modes are then made easy. This work opens the possibility to derive all seismic global parameters in an automated way, including the identification of the different rotational multiplets and the measurement of the rotational splitting, even when this splitting is significantly larger than the period spacing. Revealing buoyancy glitches provides a detailed view on the radiative core.Comment: Accepted in A&

    Mode excitation by turbulent convection in rotating stars. I. Effect of uniform rotation

    Full text link
    We focus on the influence of the Coriolis acceleration on the stochastic excitation of oscillation modes in convective regions of rotating stars. Our aim is to estimate the asymmetry between excitation rates of prograde and retrograde modes. We extend the formalism derived for obtaining stellar pp- and gg-mode amplitudes (Samadi & Goupil 2001, Belkacem et al. 2008) to include the effect of the Coriolis acceleration. We then study the special case of uniform rotation for slowly rotating stars by performing a perturbative analysis. This allows us to consider the cases of the Sun and the CoRoT target HD 49933. We find that, in the subsonic regime, the influence of rotation as a direct contribution to mode driving is negligible in front of the Reynolds stress contribution. In slow rotators, the indirect effect of the modification of the eigenfunctions on mode excitation is investigated by performing a perturbative analysis of the excitation rates. It turns out that the excitation of solar pp modes is affected by rotation with excitation rates asymmetries between prograde and retrograde modes of the order of several percents. Solar low-order gg modes are also affected by uniform rotation and their excitation rates asymmetries are found to reach up to 10 %. The CoRoT target HD 49933 is rotating faster than the Sun (Ω/Ω8\Omega / \Omega_\odot \approx 8) and we show that the resulting excitation rates asymmetry is about 10 % for the excitation rates of pp modes. We have then demonstrated that pp and gg mode excitation rates are modified by uniform rotation through the Coriolis acceleration. Study of the effect of differential rotation is dedicated to a forthcoming paper.Comment: 9 pages, 4 figures, accepted in A&

    Surface-effect corrections for solar-like oscillations using 3D hydrodynamical simulations

    Full text link
    The space-borne missions have provided us with a wealth of high-quality observational data that allows for seismic inferences of stellar interiors. This requires the computation of precise and accurate theoretical frequencies, but imperfect modeling of the uppermost stellar layers introduces systematic errors. To overcome this problem, an empirical correction has been introduced by Kjeldsen et al. (2008, ApJ, 683, L175) and is now commonly used for seismic inferences. Nevertheless, we still lack a physical justification allowing for the quantification of the surface-effect corrections. We used a grid of these simulations computed with the CO5^5BOLD code to model the outer layers of solar-like stars. Upper layers of the corresponding 1D standard models were then replaced by the layers obtained from the horizontally averaged 3D models. The frequency differences between these patched models and the 1D standard models were then calculated using the adiabatic approximation and allowed us to constrain the Kjeldsen et al. power law, as well as a Lorentzian formulation. We find that the surface effects on modal frequencies depend significantly on both the effective temperature and the surface gravity. We further provide the variation in the parameters related to the surface-effect corrections using their power law as well as a Lorentzian formulation. Scaling relations between these parameters and the elevation (related to the Mach number) is also provided. The Lorentzian formulation is shown to be more robust for the whole frequency spectrum, while the power law is not suitable for the frequency shifts in the frequency range above νmax\nu_{\rm max}.Comment: 11 pages, 14 figures, 4 tables; accepted for publication in Astronomy & Astrophysic
    corecore